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1. INTRODUCTION

Within the field of interacting particle systems, there has long been interest
in investigating speed of convergence to equilibrium. For the stochastic
Ising model (see Holley,(9) Aizenman and Holley,{1) Martinelli, Olivieri,
and Scoppola,(13) and Minlos and Trish(14)) and attractive reversible non-
critical nearest particle systems (see Liggett(12) for the supercritical case and
Mountford<15) for the subcritical), it is known that such convergence takes
place exponentially fast.

In all the above processes, particles can be created and destroyed. In
the exclusion process, though, particles are indestructible, their only inter-
action being to exclude one another from full sites. Due to the crowding
among the particles, one might suspect that convergence for the exclusion
process is much slower, at least if the jump range is not too large. In this
paper, we prove this for one special case: the simple symmetric nearest-
neighbor infinite-volume exclusion process in dimension d=\. ("Simple"
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means that the maximum number of particles per site is 1, as opposed to
more general TV-exclusion.) Restriction to this case allows us to compute
the spectral representation of a certain generator, to which we reduce the
problem by using duality and the linear order of the integers. Slow con-
vergence follows from the lack of a spectral gap. For other uses of this
method, see Holley and Stroock(10) for certain one-dimensional stochastic
Ising models and the aforementioned papers of Liggett*I2) and
Mountford/15' (The method is mentioned by Deuschel and Stroock.(6) It
also should be noted that Ferrari, Presutti, Scacciatelli, and Vares(8) have
proven an upper bound on convergence speed using different methods.)

2. TWO-SITE CORRELATION AND DUALITY

In this paper, states of the system will be denoted by rj and C, so that
t],(x)e {0, 1} is the number of particles at site x at time /. Q denotes the
infinitesimal generator, and elfl is the Markov semigroup.

We start the process off with density 1/2 in the initial measure //<,:
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where ^even is the state with a particle at every even site and no particles
on the odd sites, and ?/odd is the reverse. Thus the system initially has equal
chances of being in either state.

This measure /u0 will converge to some limiting measure JJL^ (see
Liggett,"1} Chapter 8). (In fact, Theorem 1.13 of that chapter may be used
to show that the limiting measure is just the product measure with density
1/2, as might be expected. The conditions of the theorem follow from the
main result of this paper, for which the nature of /um is irrelevant.)

In order to determine the speed of convergence, we investigate the
probability that two arbitrary sites are both occupied. Let y and z be any
two sites. Assume, without loss of generality, that y < z. We wish to study
the correlation between rj,(y) and rj,(z), for which we have

A similar correlation function was studied by Spohn(16) for the stochastic
Ising model in one dimension with constant energy. We will see that for
every value of t, P"^[r],(y) = t],(z) = 1 ] is 1/4 plus an error term which goes
to zero slowly.

We intend to use spectral theory to study the convergence rate. Even
for the simple symmetric nearest-neighbor process, though, the generator is
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a complicated operator, and its spectral representation is difficult to find.
Because of symmetry, however, we may use duality, which allows us to
study the exclusion process with finitely many particles. Assuming sym-
metry and irreducibility of the jump probabilities p(x, y), Theorem l.l of
Liggett,"" Chapter 8, states that for every q and every finite subset A of
the site space S,

where A, is the finite exclusion process with the same transition
probabilities and \A\ particles. It may be helpful to think of running time
backward in the dual process A,: to see whether t]t "fills up" the set A, we
start from particles only on A, run time backwards, and see whether A, is
completely contained in the occupied sites of the original Y\.

For our purposes, A = { y , : } , and we may use duality as follows:

3. THE SPECTRAL REPRESENTATION

We are now in a position to begin using spectral theory, since the
generators we encounter are tractable enough. In the remainder of the
paper, we take the Hilbert-space inner product </, #> to be conjugate-
linear in / rather than in g, according to the usual physicists' convention.

We formally define our two-particle process A, as follows:

Its generator QA is bounded and so is defined on all of 12(X),
where X is the state space. It is easy to show that QA satisfies detailed
balance with respect to counting measure, which implies that QA is a sym-
metric (also called Hermitian) operator on the Hilbert space 12(X) (see
Weidmann<18)). Since it is bounded as well, QA is a self-adjoint operator on
12(X). Therefore the spectral theorem applies. To find a complete family of
eigenfunctions of QA, we can use the well-known solution of Bethe.(5)

(A rigorous proof that Bethe's eigenfunctions form a complete family has
been given by Babbitt and Thomas. (17,2 ,3 ,4)
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However, we may simplify the analysis by studying the difference
between the positions of the two particles, reducing the problem to a
reflecting random walk. If we study the process

then Yt is isomorphic to the one-particle process on jc > 1, reflecting
rightward at zero. Since

we may investigate the rate of convergence of Pz y[ Y, is even].
The transitions for the process Y, have rate /1/2 to each side, except

from x= 1, whence there is only a rate of A/2 to the right. (Here I/A is the
mean time a particle waits before it jumps in the two-particle process.) The
process Y, has generator Q:

with boundary condition /(O) =/(!). This generator is bounded and hence
defined on all of 12(N), and it satisfies detailed balance with respect to
counting measure. Again, this is enough to show that Q is self-adjoint in
12(N). We will obtain its spectral representation to get that of the semi-
group e'a.

The family 1'k(x) = ^/2/n cos(k(x — 1/2)) consists of eigenfunctions, as
can easily be verified directly. (The factor of ^/2/n normalizes them in
L2[0, TI].) These eigenfunctions are chosen so as to satisfy the boundary
condition above; their eigenvalues are ca(k) = A(cos(&) — 1).

For/e/ '(TV), define the operator U as follows:

Then U is clearly bounded and therefore has a unique bounded extension
to all of 12(N). Define the operator V on L2[0, x~\ thus:

By Bessel's inequality, V is bounded, and it can be shown that [7 is a
Hilbert space isomorphism with V= U~l.
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Writing/for Uf, we have that for every f e ! 2 ( N ) ,

This means that for every such/,

By self-adjointness, the generator e'Q has the same spectral representation,
with (o(k) replaced by e'w(k). That is, for every f e l 2 ( N ) ,

4. THE CONVERGENCE STUDY

We now wish to investigate the rate of convergence of P2 ~ y[ Y, is
even]. To do so, let f ( x ) be the indicator function of the even integers
2,4,6,..., and for re(0, 1), \etfr(x) = r*f(x)ell(N). Then we have

where (9) follows from the Dominated Convergence Theorem. To compute
the transform fr(k), it is convenient to use the identity

This allows one to use the very useful device of computing the sum of a
geometric series.

By a routine calculation, we obtain
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We can rewrite this as

From (11) , using arbitrary x in place of r — y, we now have

where

We now investigate the limits of these integrals as r -» 1. The first gives the
limiting correlation value of 1/4; the second gives an error term through
which we will see the convergence speed.

4.1. The Limiting Value

For (13), P,.(k) will turn out to give the sum of two delta functions in
the limit, as we might expect since it is similar to the Poisson kernel. To
see this, we need three propositions about P,.(k}; the proofs are left to the
reader. The arguments parallel the standard derivation of the Poisson
kernel.

Proposition 1. For every re(0, 1), Pr(k) is nonnegative for
/C6[0, 7t].

Proposition 2. On any /c-interval [s,n~s}, Pr(k)->0 uniformly
in k.
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Proposition 3.

Lemma 1.

Proof. We have

Thus,

when r is near 1. (This can easily be made rigorous since Pr(k) has a finite
integral on [0, n/2~\.) Since / is continuous, we can split [0, n/2] into
[0, 6} and [d, n/2~] such that \f(k)— /(0)| is small on the first interval and
\Pr(k)\ is uniformly small on the second. Hence we can make our expres-
sion as small as desired by taking r close enough to 1, which proves the
lemma.

Lemma 2.

Proof. The above proof goes straight through, mutatis mutandis.
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These two lemmas show that in the limit, Pr(k) gives the distribution

We can now find the limit of (13). Let

Then/ r(Ar)eC(/?), and therefore

4.2. The Error Term

For the second integral, (14), we seek to find

where, again,

This limiting function g(k) has two singularities, at 0 and n, but it is
easy to check that they are removable, and so we may extend g(k) to be
continuous on [0, n~\. (In fact, g(0)= 1/4 independently of x.) Then gr-*g
a.e. on [0, n]. It is not difficult to show that gr(k) has a uniform bound,

For re(0, 1), gr(k)eC(R), and for all ki{Q,n},
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independent of both k and r. We may therefore use the Dominated Con-
vergence Theorem on the above integral to obtain

4.3. The Rate of Convergence

Putting (24) and (26) together allows us to express the probability
under discussion as follows:

We see that the first part of the spectral expansion remains at 1/4 for all
t, and the second part gives an error term depending on t. To see how this
error behaves as ?->oo, we use Laplace's method (see, for instance,
Erdelyi,(7) pp. 36-37). Let

and

Our integral becomes
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Then g is continuous, h is infinitely differentiable, and we at once have
that //(0) = 0, h"(0)= -/l<0, and on [0, n], h attains its maximum at
k = 0 and nowhere else. Hence we have Laplace's result:

where g(0)= 1/4 follows from L'HopitaFs Rule.
Therefore, we have shown that as t -+ oc,

Thus, as suspected, convergence to equilibrium occurs quite slowly in
this case, and the asymptotic rate of convergence does not depend on the
separation of the arbitrary sites y and -.

(It is interesting to note that for the simple random walk on Z,
without the reflecting barrier at 0, the probability of being on an even
integer goes to 1/2 exponentially fast. This makes the above result for the
reflected walk somewhat surprising. The barrier not only makes the rate
polynomial, but a rather slow polynomial as well. What this might mean
in terms of the exclusion process is left to the reader to judge.)
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